SPRING 2024: BONUS PROBLEM 6

BP 6. Suppose A is a non-diagonalizable 3×3 matrix with $p_A(x) = (x - \lambda_1)^2 (x - \lambda_2)$, so that dim $(E_{\lambda_1}) = 1$.

Thus, the JCF of A has the form $\begin{pmatrix} \lambda_1 & 1 & 0\\ 0 & \lambda_1 & 0\\ 0 & 0 & \lambda_2 \end{pmatrix}$. Let v_2 be any vector satisfying $(A - \lambda_1 I)^2 v_2 = 0$, but v_2 is not an eigenvector for λ_1 and set $v_1 := (A - \lambda_1 I)v_2$. Take v_3 any eigenvector of λ_2 . Show that v_1, v_2, v_3 are linearly independent.

Solution. To see that v_1, v_2, v_3 are linearly independent, suppose $av_1 + bv_2 + cv_3 = \vec{0}$. Apply the matrix $(A - \lambda_1 I)^2$ to both sides of this equation to get:

$$a(A - \lambda_1 I)^2 v_1 + b(A - \lambda_1 I)^2 v_2 + c(A - \lambda_1 I)^3 v_3 = \vec{0}.$$

By definition, $(A - \lambda_1 I)^2 v_2 = 0$. And $(A - \lambda_1 I)^2 v_1 = \vec{0}$, because we showed above that $(A - \lambda_1 I) v_1 = \vec{0}$. Thus, $c(A - \lambda_1 I)v_3 = \vec{0}$. However,

$$(A - \lambda_1 I)^2 v_3 = (A - \lambda_1 I) \{ (A - \lambda_1 I) v_3 \}$$

= $(A - \lambda_1 I) \{ A v_3 - \lambda_1 v_3 \} = (A - \lambda_1 I) \{ (\lambda_2 - \lambda_1) v_3 \}$
= $(\lambda_2 - \lambda_1) (A - \lambda_1 I) (v_3) = (\lambda_2 - \lambda_1) (\lambda_2 - \lambda_1) v_3.$

Thus, from $c(A - \lambda_1 I)v_3 = \vec{0}$, we have $c(\lambda_2 - \lambda_1)^2 v_3 = 0$. Since $\lambda_2 - \lambda_1 \neq 0$, we must have c = 0. Thus, $av_1 + bv_2 = 0$. Now apply $A - \lambda_1 I$ to this equation. Since $(A - \lambda_1 I)v_1 = \vec{0}$ and $(A - \lambda_1)v_2 \neq \vec{0}$, we have $b(A - \lambda_1 I)v_2 = \vec{0}$ which implies b = 0. Finally, this leaves $av_1 = \vec{0}$, so a = 0. Therefore, v_1, v_2, v_3 are linearly independent.