SPRING 2024: BONUS PROBLEM 6

BP 6. Suppose A is a non-diagonalizable 3×3 matrix with $p_{A}(x)=\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)$, so that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=1$. Thus, the JCF of A has the form $\left(\begin{array}{ccc}\lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right)$. Let v_{2} be any vector satisfying $\left(A-\lambda_{1} I\right)^{2} v_{2}=0$, but v_{2} is not an eigenvector for λ_{1} and set $v_{1}:=\left(A-\lambda_{1} I\right) v_{2}$. Take v_{3} any eigenvector of λ_{2}. Show that v_{1}, v_{2}, v_{3} are linearly independent.
Solution. To see that v_{1}, v_{2}, v_{3} are linearly independent, suppose $a v_{1}+b v_{2}+c v_{3}=\overrightarrow{0}$. Apply the matrix $\left(A-\lambda_{1} I\right)^{2}$ to both sides of this equation to get:

$$
a\left(A-\lambda_{1} I\right)^{2} v_{1}+b\left(A-\lambda_{1} I\right)^{2} v_{2}+c\left(A-\lambda_{1} I\right)^{3} v_{3}=\overrightarrow{0}
$$

By definition, $\left(A-\lambda_{1} I\right)^{2} v_{2}=0$. And $\left(A-\lambda_{1} I\right)^{2} v_{1}=\overrightarrow{0}$, because we showed above that $\left(A-\lambda_{1} I\right) v_{1}=\overrightarrow{0}$. Thus, $c\left(A-\lambda_{1} I\right) v_{3}=\overrightarrow{0}$. However,

$$
\begin{aligned}
\left(A-\lambda_{1} I\right)^{2} v_{3} & =\left(A-\lambda_{1} I\right)\left\{\left(A-\lambda_{1} I\right) v_{3}\right\} \\
& =\left(A-\lambda_{1} I\right)\left\{A v_{3}-\lambda_{1} v_{3}\right\}=\left(A-\lambda_{1} I\right)\left\{\left(\lambda_{2}-\lambda_{1}\right) v_{3}\right\} \\
& =\left(\lambda_{2}-\lambda_{1}\right)\left(A-\lambda_{1} I\right)\left(v_{3}\right)=\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{1}\right) v_{3}
\end{aligned}
$$

Thus, from $c\left(A-\lambda_{1} I\right) v_{3}=\overrightarrow{0}$, we have $c\left(\lambda_{2}-\lambda_{1}\right)^{2} v_{3}=0$. Since $\lambda_{2}-\lambda_{1} \neq 0$, we must have $c=0$. Thus, $a v_{1}+b v_{2}=0$. Now apply $A-\lambda_{1} I$ to this equation. Since $\left(A-\lambda_{1} I\right) v_{1}=\overrightarrow{0}$ and $\left(A-\lambda_{1}\right) v_{2} \neq \overrightarrow{0}$, we have $b\left(A-\lambda_{1} I\right) v_{2}=\overrightarrow{0}$ which implies $b=0$. Finally, this leaves $a v_{1}=\overrightarrow{0}$, so $a=0$. Therefore, v_{1}, v_{2}, v_{3} are linearly independent.

